Chebyshev Approximations for the Riemann Zeta Function

By W. J. Cody,* K. E. Hillstrom,* and Henry C. Thacher, Jr.**

Abstract. This paper presents well-conditioned rational Chebyshev approximations, involving at most one exponentiation, for computation of either $\zeta(s)$ or $\zeta(s) - 1$, $.5 \le s \le 55$, for up to 20 significant figures. The logarithmic error is required in one case. An algorithm for the Hurwitz zeta function, and an example of nearly double degeneracy are also given.

1. Introduction. The Riemann zeta function is defined by

(1.1)
$$\zeta(s) = \sum_{k=1}^{\infty} k^{-s} \quad (\text{Re}(s) > 1)$$

or by the power series expansion

(1.2)
$$\zeta(s) = \frac{1}{s-1} + \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \gamma_n (s-1)^n \quad (\operatorname{Re}(s) > 0)$$

where

$$\gamma_n = \lim_{m \to \infty} \left\{ \sum_{k=1}^m \frac{(\ln k)^n}{k} - \frac{(\ln m)^{n+1}}{n+1} \right\}.$$

It is an analytic function of s, regular throughout the complex plane except for a simple pole of residue 1 at s = 1. The zeta function satisfies the functional equation

(1.3)
$$\zeta(1-s) = 2^{1-s} \pi^{-s} \cos(\frac{1}{2}\pi s) \Gamma(s) \zeta(s).$$

Evaluation of the function for real s usually involves taking a partial sum of (1.1)and applying the Euler-Maclaurin summation formula to the remainder. While this procedure is theoretically valid for all s > -2n - 1, where n terms of the Euler-Maclaurin summation formula are used, there is serious cancellation error for s < 1.5. However, the reflection formula, Eq. (1.3), can be used for s < .5, while Thacher [7] has recently used Eq. (1.2) as a basis for expansions in Chebyshev polynomials valid both for $\frac{1}{2} \le s \le \frac{3}{2}$ and for $1 \le s \le 2$. For $s \ge 2$, it is still necessary to evaluate a partial sum of the series (1.1). The process involves an exponentiation for each new term added to the sum, and is therefore quite slow. This paper presents rational Chebyshev approximations for evaluating $\zeta(s)$ or $\zeta(s) - 1$ for up to 20S without any exponentiation for $.5 \le s \le 11$, and with only one exponentiation for $11 \le s \le 55$.

AMS 1969 subject classifications. Primary 3304, 3345, 6525; Secondary 4117, 4140, 6520. Key words and phrases. Rational Chebyshev approximations, Riemann zeta function, Hurwitz zeta function, logarithmic error, near degeneracy.

Copyright © 1971, American Mathematical Society

Received August 7, 1970, revised December 21, 1970.

^{*} Work performed under the auspices of the U. S. Atomic Energy Commission.

^{**} Work supported in part by the U. S. Atomic Energy Commission and in part by the University of Notre Dame.

The approximation forms and the values of s for which they are used are

$$\begin{split} \zeta(s) &\simeq R_{1m}(s)/(s-1), & .5 \leq s \leq 5, \\ \zeta(s) &-1 &\simeq R_{1m}(s), & 5 \leq s \leq 11, \\ &\simeq 2^{-s+(1/s)R_{1m}(1/s)}, & 11 \leq s \leq 25, 25 \leq s \leq 55, \end{split}$$

where the $R_{lm}(s)$ are rational functions of degree l in the numerator and m in the denominator. The maximum error was computed relative to $\zeta(s)$ for the first interval, and relative to $\zeta(s) - 1$ for the others.

2. Computational of Reference Values. Reference function values for the generation of the approximations were calculated for $.5 \le s \le 1.5$ from the coefficients given by Thacher [7], and for the other s from a modification of the above-described technique based on the Euler-Maclaurin summation formula. The modification involves a method for estimating the number of terms needed in the partial sum of (1.1).

The Euler-Maclaurin formula applied to the Dirichlet series for the Hurwitz zeta function,

(2.1)
$$\zeta(s; \alpha) = \sum_{k=0}^{\infty} (k + \alpha)^{-s}, \quad \alpha > 0, \text{ Re}(s) > 1,$$

gives

(2.2)
$$(s-1)\zeta(s;\alpha) = \frac{2\alpha+s-1}{2\alpha^*} + \sum_{k=1}^{\lfloor n/2 \rfloor} \frac{B_{2k}}{(2k)!} \frac{\Gamma(s+2k-1)}{\Gamma(s-1)\alpha^{s+2k-1}} + R_n,$$

where

(2.3)
$$R_n = \frac{(-1)^{n+1}\Gamma(s+n)}{n! \ \Gamma(s-1)} \int_0^\infty \frac{\hat{B}_n(-t) \ dt}{(\alpha+t)^{s+n}}$$

and $\hat{B}_n(x)$ is the periodic extension of the *n*th Bernoulli polynomial. Since $(\alpha + t)^{n+n} > 0$ for $t > -\alpha$, the mean value theorem can be used to obtain

(2.4)
$$R_n = (-1)^{n+1} \frac{\Gamma(s+n-1)}{n! \Gamma(s-1)} \frac{B_n(\xi)}{\alpha^{s+n-1}}, \quad 0 \le \xi \le 1.$$

Thus

(2.5)
$$|R_n| \leq \frac{1}{n!} \prod_{k=1}^n \frac{(s+k-2)M_n}{|\alpha|^{s+n-1}},$$

where

$$M_n = \max_{0 \le x \le 1} |B_n(x)|.$$

Letting G and A denote the geometric and arithmetic means of the quantities $\{(s + k - 2)\}$, and using the arithmetic-geometric mean inequality, we have

(2.6)
$$\prod_{k=1}^{n} (s+k-2) = G^{n} \leq A^{n} = \left\{ \sum_{k=1}^{n} \frac{(s+k-2)}{n} \right\}^{n} = \left(s + \frac{n-3}{2} \right)^{n},$$

538

so that

(2.7)
$$|R_n| \leq \frac{1}{n!} \left(s + \frac{n-3}{2}\right)^n \frac{M_n}{|\alpha|^{s+n-1}}.$$

Lehmer [4] discusses the extrema of the Bernoulli polynomials and shows that $M_n = |B_n|$ for *n* even. For *n* odd, he gives 11D values of M_n , for $n \leq 13$, as well as relatively sharp asymptotic formulas for larger *n*. We thus see that [n/2] terms of (2.2) will approximate $(s - 1)\zeta(s; \alpha)$ with an absolute error less than 10^{-D} provided that

(2.8)
$$|\alpha| \geq \left\{ \left(s + \frac{n-3}{2}\right)^n \frac{M_n}{n!} 10^n \right\}^{1/(s+n-1)}$$

In principle, then, one can obtain $(s - 1)\zeta(s; a)$ to any desired accuracy by selecting n and m so that (2.8) is satisfied for $\alpha = a + m$, evaluating $(s - 1)\zeta(s; \alpha)$ by (2.2), and finally computing $(s - 1)\zeta(s; \alpha)$ by adding (s - 1) times the appropriate partial sum of the Dirichlet series for $\zeta(s; a)$. The procedure is valid for Re(s) > 0.

The most efficient value of n depends upon s and D. In our calculations, we did not vary this parameter, but gave it the constant value 13, for which

$$m = [\{8.40798 \times 10^{D-11}(s+5)^{13}\}^{1/(s+12)} + 1 - a],$$

where [] denotes "the integer part of." The variable order of the partial sum prevented the use of Markman's economical method [5] of reducing the necessary number of exponentiations in (2.2).

All computations were carried out on a CDC 3600 in 25S arithmetic. Extensive checking against tables and by overlapping of methods shows that our master routines were accurate to roughly a minimum of 23S.

3. Generation of the Approximations. The various approximations were generated in 25S floating-point arithmetic on a CDC 3600 using standard versions of the Remes algorithm [2]. With two exceptions, the computations were straightforward.

The first exception was the analysis relating to the approximation form for the last two intervals. The quantity

(3.1)
$$\delta(s) = \frac{\zeta(s) - 1 - 2^{-s + (1/s)R_{lm}(1/s)}}{\zeta(s) - 1}$$

is the error of approximation relative to $\zeta(s) - 1$. However, the basic Remes algorithm is limited to error expressions of the form

(3.2)
$$\Delta(s) = \frac{f(s) - R_{im}(\phi(x))}{g(x)}.$$

Hence, we must modify (3.1). By letting

(3.3)
$$\delta(s) = 1 - 2^{-d(s)},$$

we find that d(s) has the form (3.2) with

$$f(s) = s[\ln(\zeta(s) - 1)/\ln 2 + s], \quad g(s) = s,$$

and

$$\phi(s) = 1/s.$$

We note that the local extrema of d(s) and $\delta(s)$ occur for the same values of s, and that

$$\delta(s) = (-\ln 2) d(s) = \ln(1 - \delta(s)) \simeq \delta - \frac{1}{2}\delta^2,$$

where $\delta(s)$ is the "logarithmic error" discussed by King and Phillips [3] and Sterbenz and Fike [6]. The logarithmic error has been associated primarily with obtaining starting values for various Newton iteration schemes. However, we can use $\delta(s)$ in the Remes algorithm since it approximates the Chebyshev error $\delta(s)$ to within terms of order $\delta^2(s)$, an error that is swamped by normal roundoff in the Remes algorithm itself whenever $\delta(s)$ is small.

The second anomaly occurred in the computation of $R_{ss}(1/s)$ for the interval [11, 25]. Although the error curves for R_{66} and R_{77} appear to be standard, R_{ss} is nearly doubly degenerate. The method of artificial poles [2] determined the Chebyshev error for R_{ss} as approximately 5.2 $\times 10^{-17}$, with the error curve still not leveled. At this point, the denominator had among its zeros the values

 $s_1 = .0371111862$ and $s_2 = .13063202$.

Corresponding zeros in the numerator were $s_1 + (1 \times 10^{-10})$ and $s_2 + (2 \times 10^{-8})$. To our knowledge, this is the first case of nearly double degeneracy that has occurred in practice.

4. Results. Table I lists the values of

$$E_{lm} = -100 \log_{10} \delta_{lm}$$

for selected segments of the L_{∞} Walsh arrays. The minimax error δ_{lm} of approximation by R_{lm} is the error relative to $\zeta(s)$ for the interval [.5, 5], and relative to $\zeta(s) - 1$ for the other intervals.

Tables II-V present the approximations giving accuracies most appropriate for computers in use today. The coefficients are given to accuracy slightly greater than that justified by the approximation errors, but reasonable additional rounding should not greatly affect the overall accuracies. Each approximation listed, using the coefficients just as they appear here, was tested for random arguments against the master function routines, and the stated accuracies were all verified.

There are a few anomalies present in the Walsh array. Nonstandard error curves are flagged in Table I. Usually, a nearly degenerate case is signalled by the presence of a nonstandard error curve for the approximation that is one degree lower in both numerator and denominator. Although as previously mentioned, R_{77} for the interval [11, 25] has a standard error curve, R_{88} is nearly doubly degenerate. This troublesome approximation is not given in Table IV. Instead, the nondiagonal element R_{79} is given.

With a little care, computer subroutines returning almost full machine precision values of $\zeta(s)$ and of $\zeta(s) - 1$ can be written using these approximations. One troublesome computation is that for $\zeta(s) - 1$ for $.5 \leq s \leq 5$. If one uses

(4.1)
$$(s-1)\zeta(s) \simeq R_{lm}(s) \equiv \sum_{i=0}^{l} p_i s^i / \sum_{i=0}^{m} q_i s^i, \quad .5 \leq s \leq 5,$$

	$E_{lm} = -100 \log_{10} \delta_{lm}$												
.5 <u><</u> s <u><</u> 5.													
m	1	2	3	4	5	****** 6	******	8	****** 9				
0 1 2 3 4 5 6 7 8 9	191 266 342 418	214 322 429 536 633	367 414 590 722 792	417 717 782 862*	1142*	1370	1658	796 1906*	2193*				
				5 <u><</u> s	<u><</u> 11	******	*****		******				
0 1 2 3 4 5	13† 71 147 315	47† 146 244 444	97 227 342 456 569	156 316 443 570 692	219 951*	283	348						
7 8 9	******	*****	*****	*****	*****	1211"	1571	1738* ******	1865* *****				

TABLE I

*Coefficients for these approximations only are given in Tables II-V.

[†]Nonstandard error curve.

TABLE I (cont'd)

 $11 \leq s \leq 25$ l **** ***** 626 676 939* 1165* 1803* 1961* 25 < s < 55 **** **** ****** **** *** 741 795 882 843* 1169* 1760* 1979* **********

[†]Nonstandard error curve.

*Coefficients for these approximations only are given in Tables II-V.

				(s-1)ζ(s) ≃ ∑ j=	o ^{pjsj}	$\binom{n}{\sum_{j=0}^{n}}$	qjs ^j ,	.5 <u><</u> s_	<u><</u> 5			
n	t			Pj						۹j			
4	0 1 2 3 4	-1.32899 -1.70341 -7.70056 -1.42561 -8.36940	37437 74205 02483 64640 23543				04) 04) 03) 03) 01)	-2.65799 -1.17972 -1.03940 -1.18419 1.00000	37266 24222 13777 54886 00000				04) 04) 03) 02) 00)
È.	0 1 2 3 4 5	-3.44793 -3.25983 -9.63006 -1.08872 -6.95142 -6.52319	47840 44394 98255 52505 48803 89744	721 057 869 125 854 728			06) 06) 05) 05) 03) 02)	-6.89586 -7.41777 -1.42686 -6.21717 -7.03261 1.00000	96520 18287 20411 54627 35254 00000	340 314 978 536 848 000			06) 05) 05) 03) 02) 00)
8	012345678	1.28716 1.37539 5.10665 8.56147 7.48361 4.86010 2.73957 4.63171 5.78758	81214 69320 59183 10024 81243 65854 49902 08431 10040	82446 37025 64406 33314 80232 61882 21406 83427 96660	39280 11182 10368 86246 98482 51153 08772 12306 65910	9 (5 (9 (4 (5 (8 (1 (9 (10) 10) 09) 08) 07) 06) 05) 03) 01)	2.57433 5.93816 9.00633 8.04253 5.60971 2.24743 7.57457 -2.37383 1.00000	62429 56486 03732 66342 17595 12028 89093 57813 00000	64846 79590 61233 83289 41920 99137 41537 73772 00000	24466 16000 43908 88858 06281 52354 56011 62308 00000	7 3 9 7 4 3 5 6 0	10) 09) 08) 07) 06) 05) 03) 01) 00)
9	0123456789	9.53904 1.09086 4.57302 9.44640 1.13392 9.69200 6.71953 3.27425 1.09513 2.84456	31383 19179 66750 69371 40859 64774 10507 31821 C5859 26751	75296 76949 30644 30822 96679 06284 96081 83494 34055 69802	85073 25970 70069 59763 77378 28141 75927 05394 20435 16448	071(267(336(084(27C(723(677(001(868(194(11) 12) 11) 10) 10) 08) 07) 06) 05) 03)	1.90780 5.83214 1.04516 1.22272 1.07248 6.86833 3.42258 1.13430 2.77837 1.00000	86276 73972 64692 73758 18832 53570 54978 57824 18457 00000	75059 70833 48187 61580 75479 00418 70618 29430 74528 00000	16848 55022 07276 59174 65542 28875 48187 01348 05958 00000	384 737 116 256 864 818 183 947 463 000	12) 11) 11) 10) 09) 07) 06) 05) 03) 00)

TABLE II

•		ζ((s) ≃ 1	+ ∑, 1 1=0	, ^T j ^(t)	∑ qjTj(t L=0), t = [£]	<u>1-8</u> , 3	5 <u><</u> 8	<u><</u> 11		
n	t			Pj					٩j			
* 5	012345	1.84900 -8.39681 1.84197 -2.32222 1.68560 -5.72149	99918 24248 92969 78218 34490 34762	7 2 4 6 2 5	*****	(03) (02) (02) (01) (00) (-02)	4.58161 2.17592 4.75387 6.01111 4.36801 1.51875	73101 06213 98338 09082 89581 00000	5 4 2 7 7 0		***** ((((05) 05) 04) 03) 02) 01)
6	0 1 2 3 4 5 6	7.65350 -3.51659 8.00110 -1.09338 9.43060 -4.90452 1.21767	39697 51754 63791 72046 49292 46402 64406	5206 0597 5310 0591 2886 1741 2363		(04) (04) (03) (03) (01) (00) (-01)	1.87400 8.84015 1.94507 2.57600 2.12069 1.04683 2.27812	70944 00526 16063 76199 28052 24143 50000	9945 2110 8845 8960 1806 9803 0000			07) 06) 06) 05) 04) 03) 01)
8	0 1 2 3 4 5 6 7 8	-1.37639 7.48218 -2.07584 3.55302 -4.06706 3.19804 -1.69820 5.61485 -8.93888	45864 91630 50481 55709 44955 86402 93703 84239 70592	32697 53159 02110 62142 18548 71469 37228 42890 61549	9078 7222 1368 9466 8897 1139 5303 4752 4375	(07) (06) (05) (04) (03) (02) (00) (-02)	-2.59451 -9.48715 -1.05496 4.67774 3.12936 4.59581 3.88176 1.92561 5.12578	24986 40757 19347 48821 04057 80383 10961 54483 12500	97831 99078 40052 19930 38135 93050 03968 44914 00000	0818 1663 0329 4847 3370 6974 3366 2325 0000		09) 08) 06) 06) 06) 05) 04) 03) 01)
9	0 1 2 3 4 5 6 7 8 9	1.31731 -7.49969 2.38862 -4.95116 7.10728 -7.25277 5.26209 -2.63045 8.28410 -1.26433	C0778 32583 72960 97536 21386 77641 82645 60896 63650 19164	41255 63955 74183 05156 88157 34448 20380 79592 33952 40679	95241 41082 05175 15979 86508 98223 54349 12803 88601 13509	(C8) (07) (07) (06) (05) (04) (03) (02) (00) (-C1)	2.32735 8.06195 1.20398 1.93082 3.66527 6.22570 7.20159 5.71179 2.80036 7.68867	50216 84801 93324 33109 98303 65496 25663 75640 61256 18750	37673 09344 79128 74192 89832 50081 83949 89075 59096 00000	34965 64523 14480 31735 19232 68318 26869 79564 99239 00000		10) 09) 08) 07) 06) 05) 04) 03) 01)

TABLE III

		ζ(s) :	-s - 1 + 2	+ (1/s)	ⁿ _{j=0} ^p j ^{s−j} /	/ ⁿ _{j=0} q _j s ^{-j} ,	11	<u>< s < 2</u>	:5		
n	t		Рj					٩ _j			*****
4	0 1 2 3 4	2.88915 5631 -3.60673 2154 1.74441 5529 -3.88297 1051 3.36332 6399	2 2 9 6 7 5 8 9 4 4		(-06) (-04) (-02) (-01) (00)	8.72078 -9.58659 2.61239 -1.39152 1.00000	04947 06458 70760 31614 00000	2 3 9 9 0			(-05) (-04) (-02) (-02) (-02) (-00)
.5	0 1 2 3 4 5	-6.95395 3881 1.16861 2006 -8.12298 4208 2.92431 2447 -5.46064 9048 4.23648 3387	1 340 8 219 0 718 8 121 0 737 9 757		(-08) (-05) (-04) (-02) (-01) (00)	1.61059 9.59892 6.07669 1.07138 8.47868 1.00000	22487 63880 74338 06527 52767 00000	913 291 932 427 957 000			(-06) (-06) (-04) (-02) (-02) (-02) (-00)
*9	0 1 2 3 4 5 6 7 8 9	1.66156 4805 -4.68068 8276 5.83519 7273 -4.17644 0126 1.85468 4228 -5.11288 8002 8.10450 2317 -5.69951 9487	1 57746 6 06545 1 91470 4 31456 4 35979 2 04902 5 11003 6 84789	75916 26862 47318 02124 59483 40591 53193 22618	(-11) (-09) (-07) (-03) (-03) (-02) (-01) (-01) (-00)	-6.99562 -1.77757 -9.82231 -2.84927 -5.81727 -1.15848 -1.28149 -1.11913 -7.67928 1.00000	63351 96189 82573 28275 90938 74916 12405 05734 76160 00000	91916 51492 40780 90964 80480 97665 19781 90977 46288 00000	54964 56941 36442 87594 93531 85807 95742 09324 12537 00000		(-10) (-08) (-07) (-05) (-04) (-02) (-01) (-01) (-01) (00)
9	0123456789	6.54074 8726 -1.91182 3318 2.45909 2798 -1.80047 5353 8.06024 9914 -2.17335 0715 3.09201 8299 -1.10135 6580 -1.73589 2265 3.80279 0993	2 07601 2 41692 7 80779 5 42409 6 89416 4 33717 1 73503 6 72497 6 22043 8 36744	13319 93750 03147 75813 87391 13164 66849 58178 62653 53166	6 (-13) 0 (-10) 0 (-08) 5 (-06) 8 (-05) 9 (-03) 2 (-02) 8 (-01) 2 (00) 3 (00)	-9.41483 8.05123 -1.48342 -2.21243 -7.12213 -4.25218 -1.27791 -5.86508 -3.00031 1.00000	96988 81296 86157 85714 00202 58071 21921 77210 31173 00000	23587 05720 21743 34347 26622 71304 98850 99441 95834 00000	07316 22212 05569 20342 79049 01282 98331 18425 98139 00000	4 8 6 1 2 1 8 8 1 0	(-11) (-10) (-07) (-07) (-05) (-04) (-02) (-02) (-02) (-01) (00)

TABLE IV

* Denominator is of degree 2 greater than numerator.

545

TABLE V

	$ \frac{-s + (1/s) \frac{n}{j=0} p_j s^{-j} / \frac{n}{j=0} q_j s^{-j}}{j = 0} q_j s^{-j}, 25 \le s \le 55 $												
# }		********					*****		******		******		
n	t			₽j						t ^p			
		********	*****	*****		***	*****	********	*****	*****			
3	0	4.45020	40561				(-09)	-9.08360	84927				(-05)
	1	-6.39481	80674				(-07)	5.83123	29118				(-03)
	2	3.06819	07594				(-05)	-1.30562	75204				(-01)
	3	-4.92460	44511				(-04)	1.00000	00000				(00)
5	0	6.30581	82031	926			(-12)	-2.45066	98983	435			(-07)
-	1	-1.69754	12776	425			(-09)	2.27263	46889	318			(-05)
	2	1.84569	49027	429			(-07)	-9.29701	78224	265			(-04)
	3	-1.01420	20734	917			(-05)	1,98757	34180	426			(-02)
	4	2.81957	70988	437			(-04)	-2.20338	90078	903			(-01)
	5	-3.17620	79765	651			(-03)	1.00000	00000	000			(00)
8	0	1.03144	87718	88597	1168		(-15)	5.93959	41728	84190	5020		(-11)
-	i	-5.12584	61396	46882	4062		(-13)	-6.04755	35907	99918	0572		(-09)
	2	1.12948	79419	48735	4786		(-10)	3.64680	20866	83885	6275		(-07)
	3	-1.44234	66537	31309	5228		(-08)	-1.29456	90556	80118	1241		(-05)
	4	1.16824	67698	44580	9766		(-06)	3.20189	49847	02292	5001		(-04)
	5	-6.14975	16799	03148	0614		(-05)	-5.07801	55709	99940	7748		(-03)
	6	2.05594	67798	88303	2750		(-03)	5.49628	90788	15872	6560		(-02)
	7	-3.99339	42939	46688	6853		(-02)	-3.24517	61115	59724	1852		(-01)
	8	3.45234	97673	61784	5708		(-01)	1.00000	00000	00000	0000		(00)
9	0	2.32320	68054	88716	51963	3	(-16)	-1.41965	98040	97653	26071	0	(-11)
	i	-1.35449	79553	19349	35076	5	(-13)	1.34852	03552	59192	68792	1	(-09)
	2	3.55929	73750	95400	68585	2	(-11)	-8.97874	17847	37323	82249	4	(-08)
	3	-5.53602	70696	83907	98449	3	(-09)	3.35733	07823	35633	51346	7	(-06)
	4	5.61986	24870	48476	40107	6	(-07)	-9.80017	32529	00364	84028	5	(-05)
	5	-3.86350	56607	15340	11238	7	(-05)	1.76658	33281	80539	21937	9	(-03)
	6	1.79968	78444	35254	07412	3	(-03)	-2.58993	67889	18623	48909	1	(-02)
	7	-5.48022	94365	91701	99314	2	(-02)	1.97161	45596	61601	18167	1	(-01)
	8	9.90367	46668	06121	96654	9	(-01)	-1.36202	98660	70096	90749	2	(00)
	9	-8.09626	06414	79518	69042	8	(CO)	1.00000	00000	00000	00000	0	(00)

the computation

$$\zeta(s) - 1 = \frac{R_{lm}(s)}{s - 1} - 1$$

can lead to considerable subtraction error. Instead, one should use the form

(4.2)
$$\zeta(s) - 1 \simeq \frac{\sum_{i=0}^{M} \hat{p}_{i} s^{i}}{(s-1) \sum_{i=0}^{m} q_{i} s^{i}}, \quad .5 \leq s \leq 5,$$

where

$$M = \max(l, m + 1), \qquad \sum_{i=0}^{M} \hat{p}_{i} s^{i} \equiv \sum_{i=0}^{l} p_{i} s^{i} - (s - 1) \sum_{i=0}^{m} q_{i} s^{i},$$

and the \hat{p}_i are determined explicitly. It is not difficult to show that if δ_{lm} is the relative error in using (4.1) as an approximation to $\zeta(s)$, then the relative error in using (4.2) as an approximation to $\zeta(s) - 1$ is bounded by $30\delta_{lm}$. Thus, if the relative error in the machine is bounded by 10^{-D} , one should choose an $R_{lm}(s)$, $.5 \leq s \leq 5$, such that $30\delta_{lm} < 10^{-D}$.

In the second interval, the $R_{im}(s)$ are poorly conditioned when expressed in the

usual way. They are therefore presented instead as well-conditioned ratios of sums of Chebyshev polynomials. In the last two intervals, better accuracy in $\zeta(s) - 1$ will be obtained by setting n = [s] and computing $2^{-s + (1/s)R(1/s)}$ as $2^{-n} \times 2^{-(s-n) + (1/s)R(1/s)}$. where 2^{-n} can be done exactly on most computers by modifying the floating point exponent. Use of the new self-contained exponentiation routines [1] would also help.

Subroutines for both the CDC 3600 and the IBM 360 have been written using these techniques. In each case, essentially machine precision was achieved for $\zeta(s)$ and $\zeta(s) - 1$ for s in the respective ranges.

Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439

Department of Computer Science University of Notre Dame Notre Dame, Indiana 46556

Applied Mathematics Division Argonne National Laboratory Argonne, Illinois 60439

N. W. CLARK & W. J. CODY, Self-Contained Exponentiation, Proc. FJCC, AFIPS Press, Montvale, N. J., 1969, pp. 701-706.
W. J. CODY, "A survey of practical rational and polynomial approximation of func-tions," SIAM Rev., v. 12, 1970, pp. 400-423.
R. F. KING & D. L. PHILLIPS, "The logarithmic error and Newton's method for the square root," Comm. ACM, v. 12, 1969, pp. 87-88.
D. H. LEHMER, "On the maxima and minima of Bernoulli polynomials," Amer. Math. Monthly, v. 47, 1940, pp. 533-538. MR 2, 43.
B. MARKMAN, "The Riemann zeta function," BIT, v. 5, 1965, pp. 138-141.
P. H. STERBENZ & C. T. FIKE, "Optimal starting approximations for Newton's method," Math. Comp., v. 23, 1969, pp. 313-318. MR 39 #6511.
T. H. C. THACHER, JR., "On expansions of the Riemann zeta function," Math. Comp. (To appear.)

(To appear.)